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Abstract

The distributed system is becoming increasingly
popular, and this produces the need for more sophis-
ticated distributed control techniques. In this paper,
we present a method for distributed control using sim-
ple finite state automata. Each of the distributed en-
tities is “controlled” by its associated automaton, in
the sense that the entity examines the state of the au-
tomaton to determine its behavior. The result of the
collective behavior of all of the entities is fed back to
the automata, which change their state as a result of
this feedback. We give a new method of analysis which
dertves the steady state behavior of this system as a
whole, by decomposing it into two paris: describing
and solving an imbedded auziliary Markov chain, and
analyzing the behavior of the system within each of the
states of this auwiliary chain.

Key Words: distributed algorithms, finite state au-
tomata, Markov chain, queueing theory, state aggre-
gation

1 Introduction

With the advent of powerful workstations, we have
migrated from the centralized paradigm popular in the
era of the large mainframe to a distributed paradigm
that takes advantage of many cooperating processors
available at a lower total cost. With this change, many
new and exciting research problems have arisen in
distributed systems. Typically, these problems, such
as distributed communication and robot coordination,
require the cooperation of several entities in perform-
ing a single task with little or no medium for control
communication.

These problems have a common theme. In each,
we wish a collection of entities to cooperate on a task
which is most easily controlled centrally (that is, from
“outside” the system). We would like the entities to
perform this task without outside control, or in some
cases, even without outside presence. \We desire a self-
contained control mechanism, capable of producing
cooperation in the entities, with only a simple com-
mand from outside. In this paper, we develop such
an efficient control scheme with the use of simple au-
tomata associated with each entity. These automata
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independently guide the entities, and take into account
feedback that captures the composite effect of all the
entities’ actions.

Let us introduce this scheme with a simple game,
called the Goore Game by Tsetlin, who describes it
in [8]. Imagine that we have many players, none of
whom are aware of the others, and a referee. Every
hour, the referee asks each player to vote yes or no,
then counts up the yes and no answers. A reward
probability » = »(f) is generated as a function of the
fraction f of the players who voted yes. We assume
that 0 < »(f) < 1. A typical function is shown in
Figure 1. Each player, regardless of how he voted, is
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Figure 1: Typical Reward Function.

then independently rewarded (with probability ») or
penalized (with probability 1 —7). TFor instance, let us
suppose that at some point, the fraction of players vot-
ing yes was f1. Then, the reward probability would be
r(f1). Each player is then rewarded with probability
rE flg. Note that the maximum of the example func-
tion occurs at f* = 0.3. We can show the following: no
matter how many players there are, we can construct
automata such that exactly f* of them (in this case,
0.3) vote yes—after enough trials—with a probability
arbitrarily close to one. This property holds no matter
what characteristics the function has—whether or not
it is discontinuous, multimodal, etc. Note further that



the individual automata know neither the fraction f
nor the reward function »(f).

Moreover, each player plays solely in a greedy fash-
ion, each time voting the way that seems to give that
player the best payoff. This i1s somewhat unexpected.
Greed affects outcomes in an unpredictable manner.
An example of greed leading to significantly subopti-
mal outcomes is the famous prisoner’s dilemma [3]. In
this scenario, two entities (the prisoners) greedily op-
timize their own behavior, but together they produce
(for them) a globally suboptimal result. This effect
is common in greedy solutions. However, we will see
that the method used here does not have this prop-
erty, because the players do not attempt to predict
the behavior of the other players. Instead, each playver
performs by trial and error, and simply preferentially
repeats those actions which produce the best result for
that player.

Most of the control and coordination tasks in dis-
tributed systems cannot be taken care of in a straight-
forward manner, because the distributed systems have
no leader, or anything of the sort—in fact, that’s what
makes them distributed! Even if they did, it would be
hard to get a list of assigned tasks to all the mem-
bers efliciently. Consider, for instance, the problem of
communication on an Ethernet. It would be conve-
nient if some machine could be given the task of ask-
ing every other machine if they had anything to say,
and then drawing up a list of machines to transmit
in order. llowever, there is no such machine in a dis-
tributed system. One could be elected somehow, then
the lists could be generated and distributed. Unfor-
tunately, the medium to be used for electing a leader
and distributing the transmission lists is the commu-
nication channel itself! The very resource being used
to do the allocation is also the resource that is being
allocated. It would be helpful if the machines could
organize themselves without explicitly communicating
the lists to each other. The method outlined here al-
lows them to do that.

In this paper, we examine the principles involved
in stochastically “guiding” one automaton. We give
a method that allows us to approximate the perfor-
mance of these automata as a whole, without going
into the exhaustive detail about their individual be-
havior that would render an analysis intractable.

2 Single Automaton Behavior

The automaton design we considerrelies on the
same paradigm described for the Goore Game; that
is, automata perform by trial and error in an attempt
to maximize some reward probability. This is usually
most applicable in the instance of many automata,
but we first examine the single automaton case. This
will form the basis of our examination of the many
automata case in the next section.

Consider a single finite state automaton which is
capable of two actions (outputs) Ay or A;. Suppose
that every second, the current output is examined by
an external agent, and based on that action, a reward
probability is determined. If the output is Ag, the re-
ward probability is » = 7rg, and if the output is A,
the reward probability is » = »;. With probability
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r, the automaton is then rewarded; with probability
1—7, it is penalized. The automaton may then change
its state as a result of its reward (or penalty). The
cycle is continually repeated: the automaton chooses
either Ag or A;, the corresponding reward probability
is determined, and the automaton is rewarded or pe-
nalized, etc. The automaton only knows that it takes
some action, which in some way affects whether it re-
ceives a reward or a penalty. What sort of design can
be postulated for an automaton that performs better
than one that chooses Ag or A; randomly with prob-
ability 1/2 each time?

One possible design is as follows. (This automa-
ton is called La 3 in [8].) Let the automaton have
two states, 1 and —1. If the current state is —1, the
automaton chooses Ap; if it is 1, it chooses A4;. If a
reward results, the automaton stays in the same state;
if a penalty results, it moves to the other state. Sup-
pose that ro and r; are 0.4 and 0.8, respectively. Be-
low, we show that this automaton, over the long run,
will choose A; three times as often as Ag, regardless
of which state it starts in. Note that this results in
an average reward probability of 0.7, which exceeds
the random choice whose average reward probability
would be 0.6.

The equilibrium behavior of the automaton can be
modeled as a Markov chain, where the external reward
is transformed into an internal transition probability.
Define m; (i = —1,1) to be the steady state probability
of finding the automaton in state 7. Then, we get

7I’1(1-7’1)=71'_1(1—7'0) (1)
which in this example yields
0.2m; = 0.67_,

Since these are the only two states, we can also write
that
m+7_1= 1

which gives us 7y = 0.75 and m_; =1 - 0.75 = 0.25.

If the automaton has more than two states, the lim-
iting proportion of time that the automaton chooses
Ay (in this example) increases and approaches unity
asymptotically (which would yield an average reward
probability of 0.8). Suppose that we have 2n states,
{i,—i | 1 < i < n}. If the current state is negative,
the automaton chooses Ag; if it is positive, it chooses
A;. If a reward results, the automaton stays in states
n or —n if it is in either of those states; otherwise,
it moves from state i to i + 1 if ¢ is positive, or {from
i to i —1if ¢ is negative. If a penalty results, the
automaton moves from state 1 to —1 or vice versa, if
it is in one of those states; otherwise, it moves from
state i to ¢ — 1 if ¢ is positive, or from z to i+ 1if ¢ is
negative. In general, the automaton moves away from
the center if 1t wins, and toward the center if it loses.
This behavior is summarized in Figure 2.

The equilibrium behavior of this automaton can
also be modeled as a Markov chain. The resulting
balance equations give us the following.
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Figure 2: Automaton Design.
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where g = ro/(1 — 7o) and 1 = r1/(1 — ;). This in
turn yields
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Knowing again that the probabilities sum to 1, we can

write
n n
PILES SR
i=1 i=1
1—of
1—¢;

1 -7
7"1( 9«1+
1—¢1

1__,17,
71_1:( 991+
1—¢1

1_ n
4, %P0
1 -0

1_-n
. Q«o):l
1— o

I—QO” -1
0 .
. ')
1—970) ®)

1

1—7’1

1—1’0

1—7‘1

1—1g

Substituting the values r; = 0.8 and ry = 0.4 in the
above equations yields that the equilibrium probabil-
ity of choosing A, is

"1

P == e O

This probability goes to 1 as n — oo. In fact, for any
o, 71, such that 7, > ro, equations 2 and 5 together
show that the probability of choosing A; goes to 1
as n — oco. Similarly, if »g < 71, the probability of
choosing A; goes to 0 as n — co. Simply put, as the
memory size gets larger, the automaton chooses the
best option with increasing certainty.

In this example, there is only one automaton at-
tempting to behave optimally. If, instead, the reward
probability is a function of the aggregate behavior of
many automata, is it possible to design the automata
such that similarly expedient behavior results, even if
none of the automata may communicate directly with
each other? This is what we examine in the next scc-
tion.
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3 Multiple Automata Behavior

In this section, we consider what happens when we
have many automata, interacting only through the
reward function. Specifically, the automata are re-
warded based on the fraction of automata performing
a certain action, and not on the particular automata
performing that action. We wish to find the propor-
tion of time that k of N automata perform a certain
action. Hopefully, if we design the automata prop-
erly, they will collectively behave in a way such that
they spend a large fraction of time near the maximum
reward point.

Consider a population of
automata, {a1,a2,...,an}, each capable of exactly
one of two actions, Ag or A;, at discrete moments in
time (t = 0,1,2,...). We call this population a system
of automata. For all m, 1 < m < N, let the output
of automaton «a,, at time ¢ be represented by Au (1)
Also, let a(t) represent the number of automata with
output Ay and f(¢) the fraction of automata with out-
put A; at time ¢t. That is,

N
a(t) = Y wn(t) (M)

m=1

and
1) = wa(t) (®)

For each moment ¢, we compute a reward probabil-
ity » = »(f) whose value depends solely on the fraction
f=7f® (f =0,1/N,2/N,...,1). Each automaton
then independently receives a stimulus z,(t), which
is a binary valued (reward) random variable. It is ei-
ther a reward (with probability r), or a penalty (with
probability 1—7). We assume that the automata know
nothing of the reward function » or even of the exis-
tence of other automata.

Clearly, there exists a k* such that »(k*/N) >
r(k/N)for all k. Assume that k£* is unique. Let us find
the limiting proportion of time that a(t) = k*. First,
define @(k) to be the limiting proportion of time that
k automata have output Aj; that is,

T-1

a(k) = Jim 2 3 C(a(t), k) (9)
t=0

where the indicator ¢(z,y) is defined by ¢(z,y) = 1
if x = y, and 0 otherwise. We then ask: is it pos-
sible to design (finite state) automata in such a way
that ®(k*) can be made arbitrarily close to 1? The




answer is yes, although the behavior of the popula-
tion is rather complex. The problem of the behavior
in this context, essentially the Goore Game, has been
examined by Tsetlin [8], but he only describes the con-
struction and behavior of the automata, and does not
develop a general method of analysis.

The automaton we use is the one defined in the
previous section; the state diagram is displayed in Fig-
ure 2. The automaton is characterized by the memory
size n—this size will be assumed to be the same for all
automata in the population. For all m and t, let s,,(2)
be the state of automaton ay, at timet. We map states
to outputs in a straightforward way. If s, (t) < 0, then
U (t) = 0; otherwise, u, () = 1. The automaton is
said to be linear [8]; that is, state transitions occur
only between adjacent states, except for the self loops
at the ends of the state space (n and —n). We use
the mapping 8, where §(s, (1), 2m(t)) = sm(t + 1), to
indicate that s,,(¢+ 1) is the state that results for au-
tomaton o, when it is in state s, (¢) and is subject
to a stimulus (veward) z,(t).

We call this scheme the Goore Scheme. The moti-
vation is to encourage behavior that produces a posi-
tive reward and to discourage behavior that produces
a negative reward, that is, a penalty. We will show
that for any population size N, it is always possible,
with an appropriately large memory size n, to make
®(k*) arbitrarily close to 1.

Before we do so, however, let us consider the be-
havior of the system as the memory size of the au-
tomata and the number of automata increase without
bound. Borovikov and Bryzgalov [1] show that when
n = 1, that is, when the automata each have two
states, the behavior is not optimal in the long run;
in fact, with probability one, f(¢) approaches 1/2 in
the limit as N, — oo. This is undesirable since it
does not depend on the nature of the reward function;
the reward function might even have a minimum at
f = 1/2! Their demonstration of this result uses trans-
forms, and like any such demonstration, their analysis
cannot easily be related back to the original physical
situation. Therefore, we show this result intuitively as
follows.

Lemuma 1 Suppose that the memory size for each au-
tomaton is n = 1. Suppose further that there exisis

some number Ar > 0 such that Ar < r(f) < 1-Ar for

all f. Let fo = limy— oo f(2). Then limy oo fo = 1/2.

Sketch of Proof As N increases without bound, it
suffices to describe the entire set of automata with a
single fraction f(¢). Assoclated with this fraction is a
reward probability r(f(¢)). From this probability we
can derive the fraction f(t + 1).

fE+1) =r(f@O) () + (1 = »(f@))1L = (1)) (10)

Suppose that f(¢) > 1/2. Using the law of large
numbers, we may assume that as N goes to infin-
ity, the fraction of automata rewarded goes to exactly
r(f(t)). The fraction f(t + 1) consists of the portion
of f(t) that was rewarded and the portion of 1 — f(¢)
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Figure 3: Example 1 Reward Function.

that was penalized. Since f(t) > 1/2, we know that
f(@) > 1~ f(t), and therefore,

fe+1) = v(fO) @) + (1= Ar)(1 - f(2))
= (r(f(1)) — Ar)(1 - f(t))
2 r(fO)f@) + (1 - Ar)(1 - f(2))

(r(f(1)) — Ar)f(t)
Arf(t) + (1= Ar)1 - £(2)

T D2 - 50+ 0arf) - An)
Again, since 1 — f(t) < f(t), we also get (by a similar
argument)
fE+1) <1 -Anf(t)+ar(1- f(1)
or

fle+1) < f(8) - 2Arf(t) — Ar)

In summary, from the condition on r(f), we see
that

1= f(0) + (2Arf(1) = Ar) < f(t+1)
< f(t) = (2Arf(t) - Ar)
Therefore, we can conclude
F+ 1) =172 A0 - 1)
|£(t) - 1/2] (f(t)-1/2)

On the other hand, suppose that f(t) < 1/2. Then,
by the condition on 7(f), we can say that

F(0) + (Ar = 28rf(1) < F(t+1)
< 1- (1) - (Ar—28rf(1))

- =1-2Ar (11)



bly Czlmalogy to the above analysis. Again, we can con-
clude

(1) =12 Araf) - 1)
lF@ 12 =" (f(t) - 1/2)
Suppose finally that f(t) = 1/2. Then,
fE+1D)=172)(»(1/2)+ 1 -r(1/2)) = 1/2 (13)
No matter what value f(t) takes, f(t 4 1) is closer

to 1/2 by at least a factor of 1 — 2Ar. Therefore,
limy_.co fo = 1/2 (and the convergence factor is 2Ar).
m}

=1-2Ar (12)
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Figure 4: Increasing Memory Requirement To Main-
tamn ®(k*) > 0.3.

The corresponding exact analysis for n > 1 is ex-
tremely complex. However, based on simulations, and
on the conclusions from the approximate analysis be-
low in Section 3.1, we propose the following conjec-
tures.

Conjecture 1 For any value of N, there exisls a
value ng such that for all n > ny,

lim [f(t) — f"|<e
t—+00
This is to be distinguished from the similar

Conjecture 2 For any value of n, there exists a value
No such that for all N > Ny,

Jim 1) = 1/2

<€
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Conjecture 1 states that given any particular sys-
tem with N automata, we can always set the memory
size n high enough so that system operation is as close
to optimal as desired. Conjecture 2 states conversely
that given any memory size n for the automata, there
is always some population size beyond which the sys-
tem operates non-optimally; in fact, f(¢) again ap-
proaches 1/2 asymptotically. Using the reward func-
tion »(f) = —f? 4+ 0.4f 4+ 0.76, shown in Figure 3,
these two conjectures are illustrated through simula-
tion in Figures 4 and 5. This function has a maximum
at f* =0.2,s0 k* = 0.2N, rounded off to the nearest
integer. Suppose we would like ®(k*) > 0.3. Figure 4
shows the increasing minimum memory size needed to
maintain this level of performance. This illustrates
Conjecture 1. Figure 5 shows ®(k*) decreasing as N
increases, with memory size n = 5. This illustrates
Conjecture 2. (The discontinuities in the graphs are
due to the discrete jumps in the values of £*; as noted
above, £* must be an integer. Thus, for instance, for
N between 3 and 7, k* = 1, but for N between 8 and
12, k* = 2.)

3.1 State Aggregation

Our computer simulations illustrate these conjec-
tures, but they do not explain why they seem to hold.
Therefore, let us analyze this system as a Markov
chain. The state space of the chain is an N-tuple
whose m'" element, s,,, represents the state of am;
the state is denoted by § = (s1,82,...,sn). There are
thus (2n)" states in the Markov chain. Let ¢(5) for
a Markov chain state § represent the number of pos-
itive elements in §. We can then write the transition
probabilities as follows.




. N
¢85, ¢) = H Pr(zpm) (14)

where s/, for all m is the result of the mapping é(s, z)
defined above; that is, s, = 6(sm,Zm), where

Pr(reward) = r(¢(8)/N)

and
Pr(penalty) = 1 — r(¢(5)/N)

_ Define P(5) to be the equilibrium state probabil-
ity for the state §© Then, we can write the detailed
balance equations.

PE) =Y Pl 9) (15)

Knowing that the P(5) sum to 1, we can solve for
P(5). Then,

Pr(k automata are on) = Z P(s)  (16)
#(8)=k

Unfortunately, solving a Markov chain with %‘211)”
states is far from trivial, and the solution would only
give us a set of probabilities, with no description of
the dynamics of the system. Therefore, we choose
to simplify (and thus approximate) the analysis by
aggregating sets of states of the Markov chain. We
implicitly assume that the behavior of the system is
more or less the same in each of the states that make
up any particular aggregate state.

Assume for the moment that »(f) > 1/2 for all f,
so that at any time, most of the automata are in the
extreme states, that is, near n or —n. This means that
f(?) is relatively stable; since the automata are at or
near the end most of the time, state transitions be-
tween —1 and 1 (let us call these “trigger transitions,”
since they “trigger” changes in a(t), and hence, f(t))
are relatively rare, and we can assume with little loss
of precision that at most one trigger transition can
take place at a time. For that reason, we call this the
well-behaved case. (By contrast, we define ill-behaved
systems to be those with r(f) < 1/2 for some f, and
these are more difficult to analyze, so their treatment
lLas been deferred. Qualitatively, however, the optimal
behavior of these systems is still the same.) This char-
acteristic will become important when we estimate the
lengths of the intervals between trigger transitions.
Suppose that out of the N automata, k are currently
on the positive side of the state space. Note that with
the exception of the sign of its current state, the dy-
namic behavior of an automaton is the same on either
side of the state space. In other words, there is no way
to distinguish between an automaton and its “mirror
image.” All other factors being equal, any one of the &
automata on the positive side 1s just as likely to make
the first trigger transition as any one of the N — k
on the negative side. Therefore, the probability that
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the next trigger transition goes from 1 to —1 (from
positive to negative) is k/N, and the probability that
it goes from —1 to 1 (from negative to positive) is
(N — k)/N. The former corresponds to a decrease in
a(t) by one, and the latter to an increase in a(t) by
one. This suggests constructing the Markov chain in
Figure 6, where the states represent the various val-
ues that a(t) can take, rather than the various states
of any particular automata. To avoid confusion, we
call the former system states, and the latter automa-
ton states.

This chain does not represent the sequence of sys-
tem states at each discrete moment in time, but is
rather an imbedded Markov chain which represents
the sequence of system states at the instants just af-
ter trigger transitions. We can solve this chain for the
equilibrium system state probabilities II(k), and in the
following lemma, we show that it has the solution

(k) =27V (]:) )

Lemma 2 Suppose that in any system stale, any au-
tomaton is just as likely as any other to make a trigger
transition. Then the above transition probabilities are

valid, and
o) =27V (IZ)

is the solution to the imbedded Markov chain.

Sketch of Proof Using the assumption in the state-
ment of the lemma, we can write the following balance
equation.

ey = - (SEE) e (52)

(18)

In addition, we require that

N
S odk) =1
k=0

It is then a simple matter of algebra to show that the
solution to this system of equations is

(k) =27V (7)

TI(k) represents the visit ratios to the various sys-
tem states, normalized to sum to unity. It has a max-
imum at k = N/2, so the system makes the most vis-
its to that system state. ®(k), however, depends not
only on II(k), but also on the average time spent in
that system state per visit. (For more on this general
method, see Appendix B.) We now make an estimate
of this average time.

Given any memory size n, we define the persistence
time 7, (k) to be the average time that the population

m}
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Figure 6: System State Diagram.

stays in system state k. The proportion of time that
the population spends in system state k is then

T(k) 7 (k)
Sotro (R ) (k)

Our object now is to estimate the persistence time
Ta (k).

Let fzj(r) be the average amount of time it takes
for an automaton under reward probability » to move
from automaton state i to automaton state j, with
1< j < i< n (Wecan restrict our discussion to the
positive side because the behavior on the negative end
is identical, by symmetry, as discussed above.) When
i = n, that is, at the end of the automaton state space,

z:,n—l(") (1-r)y+2r(1 —7’)+3r2(1—1-)+...

1+r+4+r24...
1

1—1»r

If, on the other hand, the automaton is currently at
state 7 where 1 < 7 < n, then we reason as follows. It
will take the automaton at least one time unit to get
to state 2 — 1. After the first time unit, either it has
actually moved down to state s — 1 (with probability
1-r), or it has moved up to state i-+1 (with probability
7), in which case it must first move back to state
before it can move to state i — 1. This gives us the
recurrence equation

(k) = (19)

Il

(20)

Z?,i—l(r) =1+ 7‘(z?+1,i(7') +z?,i—1("))v 1<i<n
which can be rewritten as
(1- 7')2?,1'—1(") =1+ 7'Z?+1,i(7'); (21)

This recurrence equation can be solved by the usual
z-transform techniques [4] (see Appendix A) to yield

I1<i<n

n 1 r n—i+l N
Iy = — - 22
tz,z-l(7) 1-9p <1 (1_7‘> ( )
for 1 <7< n, and
- 1 ” "
e ") = — 23
Bam=25 (- (=) ) @
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Immediately after a trigger transition, at least one
of the automata—in particular, the one that made the
trigger transition—must be in either state 1 or —1.
Therefore, for sufficiently large n, the time this par-
ticular automaton takes to make a trigger transition
back to the other side approximates the time before
a trigger transition by any automaton. (When n is
too small, the likelihood of multiple trigger transitions
become high, and this invalidates the estimates of the
persistence times.) This is true even though this au-
tomaton may not be the same as the one that made the
last trigger transition. We can see this in two bound-
ary cases for well-behaved systems. When r is close
to 1/2, there are many automata distributed evenly
across the automaton state space, and any of these
is as likely as any other to make a trigger transition.
When 7 is close to 1, on the other hand, the likelihood
is great that the automaton that last made a trigger
transition will soon be in one of the end states, and
again, any automaton is as likely as any other to make
a trigger transition. We therefore claim that t;l,_l(r)
is a good approximation to 7,(k), and denote our es-

timate by .
t,-1(r(k/N)) (24)

so the proportion of time spent in system state k is
approximately

Ta(k) =

N o TI(k! YT (R

k’=0

(25)

We have now established the following approximation.

Approximation 1 Assume that any automaton is
Just as likely as any other to make a trigger transition.
Also assume that the persistence times are approxi-
mately proportional to the average iravel time Tp(k).
Then an approzimation to the limiting probability that

the system is in state k is
oty —Htom (1~ (24,) )
Lir=o (&) m=2rtemy (1 - (1i(rki¥/7z)v>) )2

This approximation gives some insight into the
Conjectures above. We see that the equilibrium sys-
tem state probabilities are simply weighted binomial
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Figure 7: Steady State Probability Distribution for
Example 1.

coeflicients, where each weight is the persistence time
associated with that system state. Suppose we have a
reward function whose peak is at some f* not equal
to 1/2. If we hold the population size N constant,
and increase the memory size n, the persistence time
for £* = f*N will become larger and larger. Even-
tually, the system will spend most of its time at k*,
even though it makes more visits to the system state
k = N/2, where the binomial coefficient is the great-
est. This justifies Conjecture 1. If, instead, we hold
the memory size n constant, and increase the popu-
lation size N, the visit ratios to the system states in
the vicinity of £ = N/2 will grow larger and larger.
Eventually, they will become so large that the greater
persistence time for £* = f*N is not enough to over-
come the number of visits to £ = N/2, and the system
will spend most of its time around k& = N/2. This
justifies Conjecture 2.

We give two examples of systems of automata to
show how well the approximation performs. In Ex-
ample 1, there are N = 10 automata, each with
a memory size of n = 10. The reward function is
r(f) = —f%2 + 0.4f + 0.76, shown above in Figure 3.
Recall that this function has a peak at f* = 0.2, and
that the optimal value of £* is then 2. This exam-
ple gives a flavor for the distribution of the fraction of
time spent in various system states with a relatively
small memory size, even when the reward function is
relatively smooth. Figure 7 shows the estimated and
simulated proportion of time spent in the various sys-
tem states for these parameters. Note especially that
even though some of the states have a reward probabil-
ity less than 1/2, the approximation is still accurate.

In Figure 8, we show the calculated steady state
probabilities for Example 1 for various memory sizes
n. Note that the system operates better and better as
the memory size increases; in particular, the peak of
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the curve moves from k£ = N/2 for small values of n
toward the optimal value k = 2 for large values of n.

In Example 2, there are N = 10 automata, each
with a memory size of n = 3. The reward func-
tion is »(f) = 0.9 if f = 1/N (0.1 in this case), and
7(f) = 0.6 otherwise. Figure 9 shows the estimated
and actual proportion of time spent in the various sys-
tem states. Note that the probabilities are simply nor-
malized binomial coefficients, except at k = 1 (that is,
at f = f* = 0.1), where it is much higher.

4 Other Considerations

So far we have only considered how much time,
on average, the system spends in the optimal (or any
other) system state. In any application, however, an-
other parameter of interest 1s how long the system
takes to get to the optimal condition. Since the sys-
tem does not operate in equilibrium, we cannot speak
of an exponential (or the like) convergence. Instead,
we define the walk period w™! to be the average time
between successive visits to the optimal system state,
not counting the time actually spent in that optimal
state. From the above discussion, it is clear that

41
YT I

Y H(k)a(r(k/N))

E#ke
which we can write more concisely as

-1 _ l—q)(k*)_, o I *
——WWO(L /N))

(27)
where ®(k*) is estimated from the above result. For
a typical application, we usually want to maximize
®(k*) and to minimize w~!. Heuristics to do this can
be found in [2] and [5].

Because of the possibly large walk periods, we
might consider why we should use the Goore Game
as a paradigm in these problems at all. If the reward
function is known, why not use the value of f* as a
sort of probabilistic coin flip to determine the action
of each automaton, since there is no walk period at
all? The reason is that the Goore Scheme not only in-
creases the likelihood that the percentage of automata
performing a certain action is optimal when measured
over a long period of time, it also increases that like-
lihood for each instant in time. For instance, suppose
we were to take the above suggestion, and give each
automaton a probability of f* of performing action
A;1. Then the probability that out of N automata, ex-
actly k* of them perform action A; is approximately

N\ ke Nk
(o) r=a-r
(l’\'y)f*Nf‘(l_f*)N(l"f‘)

d(k™)

k*

which can be shown to be less than or equal to 1/2
for N > 2. But as we have seen above, with a large
enough memory size n, the probability that exactly
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Figure 8: The Effect of Various Memory Sizes on Dis-
tribution.

k* automata perform action A; can be made as close
to one as desired (given that one is willing to accept
a correspondingly high premium on the walk period).
Moreover, if the reward function changes, then the au-
tomata will adapt themselves automatically to adapt
to the new function. This is not true when the au-
tomata are hard-wired to respond to a particular re-
ward function. Most real life problems tend to create
varying situations and this scheme allows the partici-
pants to react dynamically to these variations.

5 Summary

We have examined the problem of how to design au-
tomata so that they may work together cooperatively
to achieve a common goal. We have taken a large
class of systems, namely, the well-behaved systems,
and derived a simple, quickly evaluated formula for
the equilibrium system state probability distribution,
which is approximate, but close enough for most pur-
poses. We have described some other characteristics
of these systems which also impact on the behavior of
the systems, and given formulas for computing these
parameters given the steady state probability distri-
bution.

In future work, we plan to investigate the applica-
tion of this scheme to the solution of real world prob-
lems. We intend to characterize the space of problems
that are solvable by this method, and that are fur-
thermore difficult to solve by other methods. We also
propose to give specific solutions to various standard
problems, and to detail necessary modifications to this
scheme. We expect that there will be a wide range of
tasks for which this technique is applicable.
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Figure 9: Steady State Probability Distribution for
Example 2.

A Solving for Persistence Time

In Section 3.1, we claimed that the solution to the
recurrence equations 20 and 21 could be derived using
z-transform techniques [4] to yield equations 22 and
23. In this appendix, we carry out this derivation.
For any given n and r, we define

n
uj = tn—j,n-j—l(r)
Then, from equations 20 and 21, we can write

1
1—r

Ug =

(I =r)ujpr =1+ ry;
We define

U(z) = Zujzj
j=0

intending to discard any values of u; for j > n. We

multiply the recurrence equation above by z/ and sum
from j = 1 — o0, and we get

i(l —r)ujp2? = izi + rujzd

=0 i=0

. : T(U(Z) —ug) = l—i——; +rU(z)

IZTU(Z)—%:Ti—ZHU(z)
l—rz— rz () = Z(ll_ S




U(z) = 1 _ Ex _ [
1-2)(1=-r=rz) 1-2 1- 152

which we invert to get

1 1 r i+l
WET T\t T 1=

Using the substitution j = n — i, we get the equation
claimed in the main text.

B System Decomposition

In the analysis presented in this paper, we decom-
pose the system behavior into two parts: visit ra-
tios and persistence time. Volkonskiy [9] makes use
of this general method, but only for the simple case
where the reward function is of the form r(f) = rq for
f < fe,v(f) =71 < rq for f > f., where f, < 1/2
1s some critical value. He also requires r; > 1/2.
He then shows that for optimality, it is required that
limy_eo(n/N) > x, where

X = 1-H(f)
lg(wo/e1)

and

H(f.)= flg(1/fe) + (1 — fo)lg(1/(1 — fe))

where ¢; = r;/(1 — ;). If limy_oo(n/N) < X, then
the automata spend most of their time in nonoptimal
system states. Pittel [7] examines nearly the same
problem. The only change is in the automata; he as-
sumes that in a trigger transition, the automaton has
an equal chance (that is, 1/2) of taking the other ac-
tion, or staying with the same action. Using a different
method of analysis, he comes to the same conclusion.
He adds that “from the set of best decisions [which
are not unique, since the reward function is piecewise
constant], the automata choose one that allows them
the most rapid detection of any disadvantages result-
ing from any deviations from that [choice].”
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